Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 17.
Article in English | MEDLINE | ID: covidwho-2010232

ABSTRACT

The spread of viral diseases has caused global concern in recent years. Detecting viral infections has become challenging in medical research due to their high infectivity and mutation. A rapid and accurate detection method in biomedical and healthcare segments is essential for the effective treatment of pathogenic viruses and early detection of these viruses. Biosensors are used worldwide to detect viral infections associated with the molecular detection of biomarkers. Thus, detecting viruses based on quantum dots biomarkers is inexpensive and has great potential. To detect the ultrasensitive biomarkers of viral infections, QDs appear to be a promising option as biological probes, while physiological components have been used directly to detect multiple biomarkers simultaneously. The simultaneous measurement of numerous clinical parameters of the same sample volume is possible through multiplex detection of human viral infections, which reduces the time and cost required to record any data point. The purpose of this paper is to review recent studies on the effectiveness of the quantum dot as a detection tool for human pandemic viruses. In this review study, different types of quantum dots and their valuable properties in the structure of biomarkers were investigated. Finally, a vision for recent advances in quantum dot-based biomarkers was presented, whereby they can be integrated into super-sensitive probes for the multiplex detection of human viral infections.

2.
Biosensors (Basel) ; 12(7)2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1911187

ABSTRACT

COVID-19 continues to spread and has been declared a global emergency. Individuals with current or past infection should be identified as soon as possible to prevent the spread of disease. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique that has the potential to be used to detect viruses at the site of therapy. In this context, SERS is an exciting technique because it provides a fingerprint for any material. It has been used with many COVID-19 virus subtypes, including Deltacron and Omicron, a novel coronavirus. Moreover, flexible SERS substrates, due to their unique advantages of sensitivity and flexibility, have recently attracted growing research interest in real-world applications such as medicine. Reviewing the latest flexible SERS-substrate developments is crucial for the further development of quality detection platforms. This article discusses the ultra-responsive detection methods used by flexible SERS substrate. Multiplex assays that combine ultra-responsive detection methods with their unique biomarkers and/or biomarkers for secondary diseases triggered by the development of infection are critical, according to this study. In addition, we discuss how flexible SERS-substrate-based ultrasensitive detection methods could transform disease diagnosis, control, and surveillance in the future. This study is believed to help researchers design and manufacture flexible SERS substrates with higher performance and lower cost, and ultimately better understand practical applications.


Subject(s)
COVID-19 , Biomarkers , COVID-19/diagnosis , Humans , Spectrum Analysis, Raman/methods
3.
Biologia (Bratisl) ; 77(11): 3211-3228, 2022.
Article in English | MEDLINE | ID: covidwho-1906510

ABSTRACT

SARS-CoV-2 is responsible for coronavirus disease 2019 (COVID-19), progressively extended worldwide countries on an epidemic scale. Along with all the drug treatments suggested to date, currently, there are no approved management protocols and treatment regimens for SARS-CoV-2. The unavailability of optimal medication and effective vaccines against SARS-CoV-2 indicates the requirement for alternative therapies. Probiotics are living organisms that deliberate beneficial effects on the host when used sufficiently and in adequate amounts, and fermented food is their rich source. Probiotics affect viruses by antiviral mechanisms and reduce diarrhea and respiratory tract infection. At this point, we comprehensively evaluated the antiviral effects of probiotics and their mechanism with a particular focus on SARS-CoV-2. In this review, we suggested the conceptual and potential mechanisms of probiotics by which they could exhibit antiviral properties against SARS-CoV-2, according to the previous evidence concerning the mechanism of antiviral effects of probiotics. This study reviewed recent studies that speculate about the role of probiotics in the prevention of the SARS-CoV-2-induced cytokine storm through the mechanisms such as induction of anti-inflammatory cytokines (IL-10), downregulation of pro-inflammatory cytokines (TNF-α, IL-2, IL-6), inhibition of JAK signaling pathway, and act as HDAC inhibitor. Also, the recent clinical trials and their outcome have been reviewed. Supplementary Information: The online version contains supplementary material available at 10.1007/s11756-022-01147-y.

4.
Pharmaceutics ; 14(5)2022 May 13.
Article in English | MEDLINE | ID: covidwho-1896912

ABSTRACT

Smart nanoexosomes are nanosized structures enclosed in lipid bilayers that are structurally similar to the viruses released by a variety of cells, including the cells lining the respiratory system. Of particular importance, the interaction between smart nanoexosomes and viruses can be used to develop antiviral drugs and vaccines. It is possible that nanoexosomes will be utilized and antibodies will be acquired more successfully for the transmission of an immune response if reconvalescent plasma (CP) is used instead of reconvalescent plasma exosomes (CPExo) in this concept. Convalescent plasma contains billions of smart nanoexosomes capable of transporting a variety of molecules, including proteins, lipids, RNA and DNA among other viral infections. Smart nanoexosomes are released from virus-infected cells and play an important role in mediating communication between infected and uninfected cells. Infections use the formation, production and release of smart nanoexosomes to enhance the infection, transmission and intercellular diffusion of viruses. Cell-free smart nanoexosomes produced by mesenchymal stem cells (MSCs) could also be used as cell-free therapies in certain cases. Smart nanoexosomes produced by mesenchymal stem cells can also promote mitochondrial function and heal lung injury. They can reduce cytokine storms and restore the suppression of host antiviral defenses weakened by viral infections. This study examines the benefits of smart nanoexosomes and their roles in viral transmission, infection, treatment, drug delivery and clinical applications. We also explore some potential future applications for smart nanoexosomes in the treatment of viral infections.

5.
Biosensors (Basel) ; 12(5)2022 Apr 28.
Article in English | MEDLINE | ID: covidwho-1875479

ABSTRACT

Infectious diseases remain a pervasive threat to global and public health, especially in many countries and rural urban areas. The main causes of such severe diseases are the lack of appropriate analytical methods and subsequent treatment strategies due to limited access to centralized and equipped medical centers for detection. Rapid and accurate diagnosis in biomedicine and healthcare is essential for the effective treatment of pathogenic viruses as well as early detection. Plasma-engineered polymers are used worldwide for viral infections in conjunction with molecular detection of biomarkers. Plasma-engineered polymers for biomarker-based viral detection are generally inexpensive and offer great potential. For biomarker-based virus detection, plasma-based polymers appear to be potential biological probes and have been used directly with physiological components to perform highly multiplexed analyses simultaneously. The simultaneous measurement of multiple clinical parameters from the same sample volume is possible using highly multiplexed analysis to detect human viral infections, thereby reducing the time and cost required to collect each data point. This article reviews recent studies on the efficacy of plasma-engineered polymers as a detection method against human pandemic viruses. In this review study, we examine polymer biomarkers, plasma-engineered polymers, highly multiplexed analyses for viral infections, and recent applications of polymer-based biomarkers for virus detection. Finally, we provide an outlook on recent advances in the field of plasma-engineered polymers for biomarker-based virus detection and highly multiplexed analysis.


Subject(s)
Communicable Diseases , Virus Diseases , Viruses , Biomarkers , Communicable Diseases/diagnosis , Humans , Polymers , Virus Diseases/diagnosis
6.
Comput Math Methods Med ; 2022: 9735626, 2022.
Article in English | MEDLINE | ID: covidwho-1677416

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was characterized as a pandemic by the World Health Organization (WHO) in Dec. 2019. SARS-CoV-2 binds to the cell membrane through spike proteins on its surface and infects the cell. Furin, a host-cell enzyme, possesses a binding site for the spike protein. Thus, molecules that block furin could potentially be a therapeutic solution. Defensins are antimicrobial peptides that can hypothetically inhibit furin because of their arginine-rich structure. Theta-defensins, a subclass of defensins, have attracted attention as drug candidates due to their small size, unique structure, and involvement in several defense mechanisms. Theta-defensins could be a potential treatment for COVID-19 through furin inhibition and an anti-inflammatory mechanism. Note that inflammatory events are a significant and deadly condition that could happen at the later stages of COVID-19 infection. Here, the potential of theta-defensins against SARS-CoV-2 infection was investigated through in silico approaches. Based on docking analysis results, theta-defensins can function as furin inhibitors. Additionally, a novel candidate peptide against COVID-19 with optimal properties regarding antigenicity, stability, electrostatic potential, and binding strength was proposed. Further in vitro/in vivo investigations could verify the efficiency of the designed novel peptide.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/metabolism , Defensins/pharmacology , Drug Design , Furin/antagonists & inhibitors , Animals , Antimicrobial Peptides/chemistry , Catalytic Domain , Cell Membrane/virology , Computer Simulation , Data Mining , Furin/chemistry , Humans , Inflammation , Models, Molecular , Molecular Docking Simulation , Peptides/chemistry , Software , Spike Glycoprotein, Coronavirus , Static Electricity , COVID-19 Drug Treatment
7.
Int J Biol Macromol ; 182: 648-658, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1184990

ABSTRACT

Vaccination is the most effective means of controlling infectious disease-related morbidity and mortality. However, due to low immunogenicity of viral antigens, nanomedicine as a new opportunity in new generation of vaccine advancement attracted researcher encouragement. Virosome is a lipidic nanomaterial emerging as FDA approved nanocarriers with promising bioinspiration and biomimetic potency against viral infections. Virosome surface modification with critical viral fusion proteins is the cornerstone of vaccine development. Surface antigens at virosomes innovatively interact with targeted receptors on host cells that evoke humoral or cellular immune responses through antibody-producing B cell and internalization by endocytosis-mediated pathways. To date, several nanovaccine based on virosome formulations have been commercialized against widespread and life-threatening infections. Recently, Great efforts were made to fabricate a virosome-based vaccine platform against a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Thus, this review provides a novel overview of the virosome based nanovaccine production, properties, and application on the viral disease, especially its importance in SARS-CoV-2 vaccine discovery.


Subject(s)
Biomimetic Materials/therapeutic use , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/immunology , Virosomes/therapeutic use , Animals , COVID-19/immunology , COVID-19 Vaccines/immunology , Humans , Virosomes/immunology
8.
Drug Metab Rev ; 53(1): 141-170, 2021 02.
Article in English | MEDLINE | ID: covidwho-900168

ABSTRACT

The global spread of the novel coronavirus (SARS-CoV-2) and increasing rate of mortality among different countries has raised the global concern regarding this disease. This illness is able to infect human beings through person-to-person contact at an extremely high rate. World Health Organization proclaimed that COVID-19 disease is known as the sixth public health emergency of international concern (30 January 2020) and also as one pandemic (12 March 2020). Owing to the rapid outbreak of COVID-19 worldwide, health authorities focused on discovery of effective prevention and treatment techniques for this novel virus. To date, an effective drug for reliable treatment of COVID-19 has not been registered or introduced to the international community. This review aims to provide recently presented techniques and protocols for efficient treatment of COVID-19 and investigate its morphology and treatment/prevention approaches, among which usage of antiviral drugs, anti-malarial drugs, corticosteroids, and traditional medicines, biotechnological drugs (e.g. combination of HCQ and azithromycin, remdesivir, interferons, novaferon, interferon-alpha-1b, thymosin, and monoclonal antibodies) can be mentioned.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Antiviral Agents/classification , Antiviral Agents/pharmacology , Drug Therapy, Combination/methods , Humans , Medication Therapy Management , SARS-CoV-2
9.
Biosens Bioelectron ; 171: 112731, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-866448

ABSTRACT

Rapid person-to-person transfer of viruses such as SARS-CoV-2 and their occasional mutations owing to the human activity and climate/ecological changes by the mankind led to creation of wrecking worldwide challenges. Such fast transferable pathogens requiring practical diagnostic setups to control their transfer chain and stop sever outbreaks in early stages of their appearance. Herein, we have addressed this urgent demand by designing a rapid electrochemical diagnostic kit composed of fixed/screen printed electrodes that can detect pathogenic viruses such as SARS-CoV-2 and/or animal viruses through the differentiable fingerprint of their viral glycoproteins at different voltage positions. The working electrode of developed sensor is activated upon coating a layer of coupled graphene oxide (GO) with sensitive chemical compounds along with gold nanostars (Au NS) that can detect the trace of viruses in any aquatic biological media (e.g., blood, saliva and oropharyngeal/nasopharyngeal swab) through interaction with active functional groups of their glycoproteins. The method do not require any extraction and/or biomarkers for detection of target viruses and can identify trace of different pathogenic viruses in about 1 min. The nanosensor also demonstrated superior limit of detection (LOD) and sensitivity of 1.68 × 10-22 µg mL-1 and 0.0048 µAµg.mL-1. cm-2, respectively, toward detection of SARS-CoV-2 in biological media, while blind clinical evaluations of 100 suspected samples furtherly confirmed the superior sensitivity/specificity of developed nanosystem toward rapid identification of ill people even at incubation and prodromal periods of illness.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Electrochemical Techniques/instrumentation , Pneumonia, Viral/diagnosis , Spike Glycoprotein, Coronavirus/analysis , Animals , Biosensing Techniques/instrumentation , COVID-19 , COVID-19 Testing , Electrodes , Equipment Design , Gold/chemistry , Graphite/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL